
traytable
Release 0.2.0

Dennis Brookner

May 25, 2022

CONTENTS

1 traytable quickstart 3

2 traytable methods 7

3 Examples 9

Python Module Index 15

Index 17

i

ii

traytable, Release 0.2.0

A python package for tabulating crystallization results across many trays

traytable provides methods for

• storing all information about a crystallization screen in a dictionary of dictionaries

• extracting and tabulating all data about “hits” into a pandas dataframe.

Install via pip:

pip install traytable

CONTENTS 1

https://pypi.org/project/traytable/

traytable, Release 0.2.0

2 CONTENTS

CHAPTER

ONE

TRAYTABLE QUICKSTART

A python package for tabulating crystallization results across many trays

traytable provides methods for

• storing all information about a crystallization screen in dictionaries

• extracting and tabulating all data about “hits” into a pandas dataframe.

The goal of traytable is for all crystallization data to be inputted once and only once, and then conveniently looked
up and reused whenever needed.

You can find a jupyter notebook with a brief demonstration of package functionality here.

1.1 Installation

pip install traytable

1.2 Usage

A super brief example:

import traytable as tt

myscreen = tt.screen(row='protein', col='PEG', maxwell='H6') # Each row is a different␣
→˓[protein], and each column is a different %PEG
tray1 = tt.tray(myscreen, rows=[1,8], cols=[10,20]) # Rows vary from 1 to 8, columns␣
→˓vary from 10 to 20
results = tt.well(tray1, 'A3', 'good') # there is a good crystal in well A3 of tray 1
results = tt.well(tray1, ['E4', 'E5'], 'needle', old_df=results) # there are needle-y␣
→˓crystals in wells E4 and E5 of tray 1

The return results from tt.well() is a pandas data frame where every crystal you’ve logged gets its own row, and
every parameter you’ve indicated gets its own column. This makes it easy to keep track of the best conditions for your
crystals across many trays with slightly different conditions. Note that upon logging your “hits”, there’s no need to
input [protein] or %PEG; that information is already encoded by the tray and well you specified!

3

traytable, Release 0.2.0

1.2.1 Required arguments

tt.screen() requires:

• row: a string indicating the parameter that is encoded by each row in a tray

• col: a string indicating the parameter that is encoded by each column in a tray

• maxwell: a string indicating the name of the well in the bottom right corner of each tray. Any size tray is
supported; however, currently, rows must be named with letters, and columns must be named with numbers

tt.tray() requires:

• screen: The screen, as created by tt.screen(), that this tray should inherit parameters from. You can’t create
a tray without a screen.

• rows: Specify the values to assign to each row with either a single number (to assign to all rows), a list of two
numbers (to evenly space among the rows) or a list of numbers explicitly specifying a value for each row. With
8 rows, you might say rows=5, rows=[1,8] or rows=[1,2,3,4,6,8,10,12].

• cols: Specify values for columns, with the same format as for rows.

tt.well() requires:

• tray: The tray

• well: The well; must be a string of format ‘[letter][number]’, and must fall into the range specified by the screen’s
maxwell

• quality: Any type, though I recommend either a short categorical string (e.g. ‘good’, ‘bad’, ‘needles’, or
‘multilattice’) or a numerical score, in order to best utilize the tools of pandas to manipulate and summarize
your results.

• old_df: Not strictly required, but to append previous results, pass previous returns from tt.well() to the next
call as old_df =

1.2.2 Optional arguments

All three of these methods (tt.screen(), tt.tray(), and tt.well()) will accept any additional named arguments,
and include them as columns in the final data frame. As you would expect, arguments passed to tt.screen() will
apply to all wells in all trays in the screen, and arguments passed to tt.tray() will apply to all wells in that tray. For
example:

detailedscreen = tt.screen(row='protein', col='PEG', maxwell='H6', construct='HEWL',␣
→˓buffer='imidazole', bufferconc=20, salt='MnCl2', saltconc=125)
tray1 = tt.tray(detailedscreen, rows=[1,8], cols=[10,20], date='2021-01-01', setby='robot
→˓', weathernotes='very humid day')
results = tt.well(tray1, 'A1', 'good', appxnum=3, notes='rod-shaped')

4 Chapter 1. traytable quickstart

traytable, Release 0.2.0

1.2.3 Other things of note

The clonetray() method

To save some typing, you can create trays with tt.clonetray(). Usage is newtray = tt.clonetray(oldtray,
**kwargs). Any additional arguments passed to clonetray() will supercede the associated parameter from the
parent tray. For example:

assume screen already exists
tray1 = tt.tray(screen, rows=[1,8], cols=[5,10], date='2021-01-02'
tray2 = tt.clonetray(tray1, date='2021-01-03')

The read_rockmaker() method

Note: More extensive documentation of this feature to come.
It is possible to score crystals on RockMaker/RockImager via the online GUI. As a preliminary means of interfacing
between traytable and RockMaker, I have added the tt.read_rockmaker() function, which accepts a “Score
Report” .csv file and reads it into a traytable format.

Special treatment of dates

A crystal will frequently have two dates associated with it - when the tray was set, and when the crystal is being logged.
Two things of note happen to address this:

• Arguments named 'date' passed to tt.tray() and tt.well() automatically become columns named
'date_set' and 'date_logged', respectively.

• If both 'date's are present and in ISO format (YYYY-MM-DD), they are subtracted (via the datetime module) to
compute a new column days_elapsed. This is an especially important datapoint in crystallization, so it makes
sense to give it special treatment. This also avoids the redundant input of date set, date logged, and days elapsed,
when the latter is of course determined by the two former.

Using pandas methods

As mentioned above, tt.well() returns a pandas dataframe. This means that you can use pandas methods and
features as desired. One frequent usage might be printing out only select columns with bracket notation, or accessing
a certain column with dot notation, e.g.

concise_results = results[['protein', 'PEG', 'quality']]

or

import numpy as np
number_of_crystals = np.sum(results.appxnum())

You can also use the built-in plotting backend of pandas, which can be nifty to visualize what conditions are working
best.

results.plot.scatter('protein', 'PEG')

A slightly fancier plot:

1.2. Usage 5

traytable, Release 0.2.0

import numpy as np

results['proteinplot'] = results.protein + np.random.normal(scale=0.15,␣
→˓size=len(results))
results['PEGplot'] = results.PEG + np.random.normal(scale=0.15, size=len(results))

colordict= {'good':'green',
'needles':'red'}

results.plot.scatter('proteinplot', 'PEGplot', alpha=0.5, c=results.quality.
→˓map(colordict))

Mismatching columns

Results from subsequent calls to tt.well() are appended via an “outer_join”, meaning that columns present in
one dataframe but not the other will give NaN values where appropriate, but no errors. This gives flexibility to vary the
kinds of details you include across different trays and wells, while still keeping the “core” data common to all crystals
in one place.

6 Chapter 1. traytable quickstart

CHAPTER

TWO

TRAYTABLE METHODS

Note that the submodules traytable.screens, traytable.wells, traytable.csv exist purely for bookkeeping,
and all methods below are available from the top-level import traytable.

2.1 Making screens and trays

traytable.screens.clonetray(oldtray, **kwargs)
Copy a tray, overriding parameters as desired

Parameters

• oldtray (dict) – Tray to be copied

• **kwargs (any type) – Accepts all arguments accepted by tray(), including rows and cols.
Any parameters extant in oldtray not specified here will be copied into newtray

Returns newtray – Dictionary to be passed to well() for logging hits from this tray

Return type dict

traytable.screens.screen(row, col, maxwell, **kwargs)
Create a screen with global parameters

Parameters

• row (string) – Parameter encoded by the row letter

• col (string) – Parameter encoded by the column number

• maxwell (string) – Name of the well in the bottom-right corner of each tray, e.g. ‘H6’

• **kwargs (any type) – Any named arguments become global parameters to be applied to
all wells in all trays in the screen

Returns screen – A dictionary containing the screen

Return type dict

traytable.screens.tray(screen, rows, cols, **kwargs)
Create a tray, based on a screen and row/column specifications

Parameters

• screen (dict) – Screen from which the tray inherits global parameters

• rows (list or float) – Value(s) to be used as row specifications. Must be a single num-
ber, a list of two numbers, or a list of length matchng the number of rows.

7

traytable, Release 0.2.0

• cols (list or float) – Value(s) to be used as column specifications. Must be a single
number, a list of two numbers, or a list of length matching the number of columns.

• **kwargs (any type) – Set any named parameters to apply them to all wells in the tray

Returns tray – Dictionary to be passed to well() for logging hits from this tray

Return type dict

2.2 Logging crystals

traytable.wells.well(tray, well, quality, old_df=None, **kwargs)
Add one or more rows to a dataframe of crystal hits

Parameters

• tray (dict) – Tray, as created by traytable.tray()

• well (string or list of strings) – Well name(s), in format ‘[letter][number]’

• quality (string) – Short categorical description, e.g. “good” or “needles”

• old_df (pandas.core.frame.DataFrame, optional) – Working dataframe to append
to. If None, creates a new dataframe.

• **kwargs (any type) – Any additional named arguments will become columns in the
dataframe

Raises

• TypeError – Improper type for well name

• ValueError – Row or column specified by ‘well’ is out of the range specified by
tray[‘maxwell’]

Returns df – Dataframe containing the new reults, optionally concatenated with old_df

Return type pandas.core.frame.DataFrame

The methods setrows() and setcols() are exported by the package, but not documented here because their use is
not recommended, and they may be deprecated in a future version.

8 Chapter 2. traytable methods

CHAPTER

THREE

EXAMPLES

The following jupyter notebook(s) contain example usage of traytable

[1]: import traytable as tt
import matplotlib.pyplot as plt

Download this notebook and try it out yourself here

3.1 Making a screen

First, initialize the screen with screen(). This function requires that you specify

• the parameter that varies by row

• the parameter that varies by column

• the plate shape, in the form of a “max well”, e.g. the well in the bottom right corner of the plate.

Note that row refers to the parameter encoded by the row name; this is the parameter that is the same within a row,
rather than the parameter that varies across the row. Likewise for columns.

Finally, whatever additional named arguments you pass to screen() become “screen static” global parameters that
apply to all wells in all trays in the screen. Perhaps you include the protein construct, a nickname for the screen, or the
type of plate you’re using.

[2]: myscreen = tt.screen(row = 'protein', col = 'PEG', maxwell = 'H6',
construct = 'HEWL', buffer = 'imidazole 20mM')

Now let’s make a tray. Like with screen(), tray() will parse any additional named arguments as “tray static”
parameters that apply to all wells in the tray. A common example might be the date the tray was set, or a buffer or
additive that is the same across the plate.

Most importantly, tray() accepts arguments rows and cols to specify the values of the parameters varying across
the plate. These can be set in three ways:

• with a list of two numbers, e.g. row = [4, 18] which would evenly space values across the rows (with number
of rows determined via the maxwell parameter for the screen

• with a list of numbers equal in length to the number of rows/columns, which get mapped to rows/columns ex-
plicitly

• with a single number, which will be used for all rows/columns

9

https://github.com/dennisbrookner/traytable/blob/main/docs/examples/0_simple_example.ipynb

traytable, Release 0.2.0

[3]: tray1 = tt.tray(myscreen, date = '2021-01-01', pH = 5.8,
rows = [4,18],
cols = [20,25])

The clonetray() method clones a tray with useage newtray = clonetray(screen, oldtray, **kwargs)
where you can override specific parameters of the tray being cloned. When trays are similar (or identical) this saves
some typing.

[5]: tray2 = tt.clonetray(tray1, date = '2021-01-03',
rows = [4, 5, 6, 7, 8, 10, 12, 14])

In this case, using clonetray() instead of tray() saves you from having to re-specify the pH and the column values,
which haven’t changed from the previous tray.

3.2 Logging hits!

Our two trays have some crystals! We can log wells with good (or bad!) crystals via the well() function. well()
requires the tray, well, and a short string to describe crystal quality; any other named parameters (perhaps a more
verbose description, or a number of crystals) are accepted and get their own column in the resulting dataframe.

For all but the first call to well(), don’t forget old_df=df to concatenate the new results with the old results.

[7]: df = tt.well(tray1, 'A6', 'good', quantity = 3)
df = tt.well(tray1, 'B6', 'good', quantity = 2, note = "chunkier than usual", old_df=df)
df = tt.well(tray1, 'C6', 'needles', old_df=df)

[8]: df

[8]: protein PEG quality construct buffer date pH tray \
0 4.0 25.0 good HEWL imidazole 20mM 2021-01-01 5.8 tray1
1 6.0 25.0 good HEWL imidazole 20mM 2021-01-01 5.8 tray1
2 8.0 25.0 needles HEWL imidazole 20mM 2021-01-01 5.8 tray1

well quantity note
0 A6 3.0 NaN
1 B6 2.0 chunkier than usual
2 C6 NaN NaN

The well() function uses the tray and well to look up all the data you’ve logged in your screens.

If you have many wells, all of the same quality, you can log them all at once:

[9]: df = tt.well(tray2, ['B3', 'C3', 'D3', 'E3'], 'needles', old_df=df)
df = tt.well(tray2, ['A5', 'A6', 'B5'], 'good', old_df=df, note='borderline')
df

[9]: protein PEG quality construct buffer date pH tray \
0 4.0 25.0 good HEWL imidazole 20mM 2021-01-01 5.8 tray1
1 6.0 25.0 good HEWL imidazole 20mM 2021-01-01 5.8 tray1
2 8.0 25.0 needles HEWL imidazole 20mM 2021-01-01 5.8 tray1
3 5 22.0 needles HEWL imidazole 20mM 2021-01-03 5.8 tray2
4 6 22.0 needles HEWL imidazole 20mM 2021-01-03 5.8 tray2
5 7 22.0 needles HEWL imidazole 20mM 2021-01-03 5.8 tray2

(continues on next page)

10 Chapter 3. Examples

traytable, Release 0.2.0

(continued from previous page)

6 8 22.0 needles HEWL imidazole 20mM 2021-01-03 5.8 tray2
7 4 24.0 good HEWL imidazole 20mM 2021-01-03 5.8 tray2
8 4 25.0 good HEWL imidazole 20mM 2021-01-03 5.8 tray2
9 5 24.0 good HEWL imidazole 20mM 2021-01-03 5.8 tray2

well quantity note
0 A6 3.0 NaN
1 B6 2.0 chunkier than usual
2 C6 NaN NaN
3 B3 NaN NaN
4 C3 NaN NaN
5 D3 NaN NaN
6 E3 NaN NaN
7 A5 NaN borderline
8 A6 NaN borderline
9 B5 NaN borderline

Finally, let’s visualize which conditions are giving good crystals vs. needles.

[10]: colordict= {'good':'green',
'needles':'gray'}

df.plot.scatter('protein', 'PEG', alpha=0.6, c=df.quality.map(colordict))
plt.title('What [protein] vs. %PEG gives the best crystals?')
plt.show()

Looks like we should optimize with high PEG, low protein conditions. With traytable, no matter how many trays
you’ve set with slightly varied screens, you can always consolidate your results in a single table or plot.

3.2. Logging hits! 11

traytable, Release 0.2.0

3.2.1 Other things of note

• You may have noticed that optional parameters present in some calls to well(), but not others, are harmlessly
treated as NaN where missing.

• The setrows() and setcols() methods are called behind the scenes by tray() and clonetray() via the
rows and cols keyword arguments, respectively, but are also available as stand-alone functions with usage tray
= setrows(tray, rows) and likewise for columns.

3.3 Just a code chunk

[11]: import traytable as tt
import matplotlib.pyplot as plt

make trays
myscreen = tt.screen(row = 'protein', col = 'PEG', maxwell = 'H6',

construct = 'HEWL', buffer = 'imidazole 20mM')
tray1 = tt.tray(myscreen, date = '2021-01-01', pH = 5.8,

rows = [4,18],
cols = [20,25])

tray2 = tt.clonetray(tray1, date = '2021-01-03',
rows = [4, 5, 6, 7, 8, 10, 12, 14])

log results
df = tt.well(tray1, 'A6', 'good', quantity = 3)
df = tt.well(tray1, 'B6', 'good', quantity = 2, note = "chunkier than usual", old_df=df)
df = tt.well(tray1, 'C6', 'needles', old_df=df)
df = tt.well(tray2, ['B3', 'C3', 'D3', 'E3'], 'needles', old_df=df)
df = tt.well(tray2, ['A5', 'A6', 'B5'], 'good', old_df=df, note='borderline')

plot results
colordict= {'good':'green',

'needles':'gray'}
df.plot.scatter('protein', 'PEG', alpha=0.6, c=df.quality.map(colordict))
plt.title('What [protein] vs. %PEG gives the best crystals?')
plt.show()

12 Chapter 3. Examples

traytable, Release 0.2.0

3.3. Just a code chunk 13

traytable, Release 0.2.0

14 Chapter 3. Examples

PYTHON MODULE INDEX

t
traytable.screens, 7
traytable.wells, 8

15

traytable, Release 0.2.0

16 Python Module Index

INDEX

C
clonetray() (in module traytable.screens), 7

M
module

traytable.screens, 7
traytable.wells, 8

S
screen() (in module traytable.screens), 7

T
tray() (in module traytable.screens), 7
traytable.screens

module, 7
traytable.wells

module, 8

W
well() (in module traytable.wells), 8

17

	traytable quickstart
	Installation
	Usage
	Required arguments
	tt.screen() requires:
	tt.tray() requires:
	tt.well() requires:

	Optional arguments
	Other things of note
	The clonetray() method
	The read_rockmaker() method
	Special treatment of dates
	Using pandas methods
	Mismatching columns

	traytable methods
	Making screens and trays
	Logging crystals

	Examples
	Making a screen
	Logging hits!
	Other things of note

	Just a code chunk

	Python Module Index
	Index

